
Identifying Input-Dependent Jumps from Obfuscated Execution
using Dynamic Data Flow Graphs

Joonhyung Hwang
Korea Advanced Institute of Science and Technology

envia@envia.pe.kr

Taisook Han
Korea Advanced Institute of Science and Technology

han@cs.kaist.ac.kr

ABSTRACT
A method to identify input-dependent jumps from the execution
of obfuscated machine code is presented. Input-dependent jumps,
which are defined as jumps whose target addresses can be changed
depending on the input, correspond to decision points in program
execution. By investigating how a target address is calculated, it is
possible to pinpoint the triggering conditions of a given behavior,
and new execution paths can be discovered by finding input values
that change the target address. Obfuscators hinder such analysis by
inserting numerous artificial jumps that use opaque predicates with
constant values into the code. One important obfuscation approach
is virtualization-obfuscation, in which entire blocs of control flow
information are replaced with bytecode interpreter code. Using
the fact that the semantics of the original program must be pre-
served under obfuscation, we propose an obfuscation mitigation
approach that exploits the relationship between the original and
obfuscated executions using dynamic data flow graphs that repre-
sent output computation using concrete and symbolic information.
These graphs are generated from execution traces that are recorded
using dynamic binary instrumentation and simplified using pattern-
based rules based on algebraic identities and the general properties
of well-behaved programs. To identify input-dependent jumps, a
dynamic data flow graph is generated and simplified for each write
access to the program counter; if the node for the target address is
reachable from a node for an input value in the resulting graph, the
jump is input-dependent. Experimental application of the proposed
approach to code treated with various obfuscators successfully
revealed the relationship between input-dependent jumps in the
original and obfuscated executions, confirming that information
obtained from dynamic data flow graphs is useful in understanding
branch conditions.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering;

KEYWORDS
input-dependent jump; dynamic data flow graph; deobfuscation;
reverse engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSPREW-8, December 3–4, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6096-8/18/12. . . $15.00
https://doi.org/10.1145/3289239.3291460

ACM Reference Format:
Joonhyung Hwang and Taisook Han. 2018. Identifying Input-Dependent
Jumps from Obfuscated Execution using Dynamic Data Flow Graphs. In
Software Security, Protection, and Reverse Engineering Workshop (SSPREW-8),
December 3–4, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3289239.3291460

1 INTRODUCTION
Obfuscation [6, 20] is a technique for transforming program code to
make it more difficult to follow. An obfuscator hides the structure
of an original program while leaving its observable behavior un-
changed, enabling the use of the obfuscated program in place of the
original program. Although the obfuscation approach is useful for
protecting secrets contained in program code and preventing un-
wantedmodifications, obfuscation is also used inmalicious software
to hinder analysis and detection. Without proper tools and skills,
it is easy to waste effort on working with maliciously obfuscated
code with irrelevant information and missing important behavior.
It is therefore useful to develop tools that can mitigate the effects
of obfuscation and identify original program behavior to facilitate
the analysis of potentially malicious obfuscated executables.

An important approach to gaining a better understanding of
the structure and behavior of a program is identifying the branch
conditions of jumps in program execution. Conditions that trig-
ger specific behaviors can be used to discover input values for
new execution paths through the use of methods such as sym-
bolic execution [2]. Unfortunately, the control flow information of
an obfuscated program will not be related to that of the original
program. A powerful example of control flow transformation is
virtualization-obfuscation [8, 11, 18, 19, 26], which is also known
as emulation-based obfuscation [21] or table interpretation [6].
Virtualization-obfuscation transforms an original program into a
bytecode program to be executed by an interpreter. Although this
results in a program with a control flow information that is related
solely to the structure of the interpreter, jumps in the execution
of the obfuscated program will correspond to jumps in execution
of the original program because the observable behaviors of the
obfuscated and original programs should be same.

We propose a method for using input-dependent jumps to iden-
tify the relationship between the execution of an obfuscated pro-
gram and that of its original. Here, we define an input-dependent
jump as a jump whose target address can be changed depending on
the input. In both an obfuscated and original program, such jumps
will be related to decision points in program execution; by contrast,
jumps with a predetermined target address will likely be related to
obfuscation constructs.

Identification of input-dependent jumps in obfuscated code is
not trivial because execution is obfuscated by the use of constants

https://doi.org/10.1145/3289239.3291460
https://doi.org/10.1145/3289239.3291460

SSPREW-8, December 3–4, 2018, San Juan, PR, USA Joonhyung Hwang and Taisook Han

Machine
Code

Trace
Generation Trace Graph

Generation
Dynamic

Data Flow Graphs
Jump

Identification
Input-Dependent

Jumps

Figure 1: Overall process overview.

and algebraic identities. If branch conditions are generated without
proper simplification, the results are usually too complex to under-
stand, both for humans and machines. For example, Yadegari et
al. [25] reports cases where naive application of symbolic execution
to obfuscated code fails or times out even if the original code is
very simple. After observing the execution of obfuscated binaries,
we realized that such programs access large numbers of constant
values embedded in the binaries. Computation using constants can
be simplified because its results are already known. On the other
hand, computation that depends on input values will be related to
the semantics of the original program.

To identify input-dependent jumps, the proposed method gener-
ates dynamic data flow graphs from dynamically generated traces.
These graphs, which capture the computation of the target ad-
dresses of jumps, are simplified to eliminate the effects of obfusca-
tion using graph rewriting rules based on algebraic identities and
the general properties of well-behaved programs. A jump will then
be identified as input-dependent if the node for the target address
is reachable from a node for an input value in the simplified graph
for the jump. Figure 1 shows the overall process.

Testing of the proposed identification method against the com-
mercial obfuscators Code Virtualizer [15], Themida [16], and VM-
Protect [22] revealed that the number of input-dependent jumps
in the obfuscated executions did not differ significantly from the
number of jumps in the original execution. It suggests that the pro-
posed method successfully identified most of the jumps introduced
by the obfuscators as non-input-dependent. Experiments with Ti-
gress challenges [5] shows the efficacy of our method. Many of the
simplified branch conditions are able to be understood by human
with reasonable effort. In this paper, we focus on the assessment of
the proposed method against the virtualization-obfuscation tools
for x86 and x64 platforms. Our approach, however, can be applied
in other situations because no special assumptions are made re-
garding the obfuscation approach; indeed, the tested obfuscators
use combinations of various obfuscation techniques.

The rest of this paper is organized as follows. Section 2 provides
motivating examples. Section 3 introduces the dynamic data flow
graphs used by the proposed approach. Section 4 describes how the
traces and graphs are generated, while Section 5 describes how the
graphs are simplified and how input-dependent jumps are identified.
Sections 6 and 7 discuss the experimental results and review related
work, respectively, and, finally, Section 8 concludes the paper.

2 MOTIVATING EXAMPLES
In this paper, we use a factorial program (Figure 2) and a bubble
sort program (Figure 3) as examples. Although these are relatively
simple programs, they are difficult to analyze following obfuscation,
which in this case is done using Code Virtualizer 1.3.9.10 and 2.2.2.0,
Themida 2.4.6.0, and VMProtect 2.13.6 and 3.1.2.830.

Approaches to automated program analysis can be classified
into two categories: static and dynamic. In static analysis, program

fac = 1;
for (i = 1; i <= n; i++)
{

fac *= i;
}

Figure 2: Factorial program.

for (i = 1; i < n; i++)
{

for (j = i; j > 0; j--)
{

if (x[j] < x[j-1])
{

t = x[j];
x[j] = x[j-1];
x[j-1] = t;

}
}

}

Figure 3: Bubble sort program.

941911 @ 0x8b1030 : mov dword ptr [ebp-0x8], 0x1
941912 @ 0x8b1037 : mov dword ptr [ebp-0x4], 0x1
941913 @ 0x8b103e : jmp 0x8b1049
941914 @ 0x8b1049 : mov ecx, dword ptr [ebp-0x4]
941915 @ 0x8b104c : cmp ecx, dword ptr [ebp-0xc]
941916 @ 0x8b104f : jnle 0x8b105d

Figure 4: Execution of factorial of zero.

behavior is investigated without executing the program. It is easy to
lose precision under static analysis because the approach considers
all possible execution paths together. Most obfuscators in practice
are strong enough to defeat static analysis. Although there is some
work on static analysis of obfuscated machine code [11], it requires
understanding of the obfuscation structure, which usually requires
dynamic or manual analysis.

Here, we apply a dynamic approach that uses traces from pro-
gram execution. Under dynamic analysis, precise results can be
obtained using values from actual execution of the program. One
limitation of this approach is that only executed code is analyzed,
and therefore a malicious program can be classified as benign if the
malicious part of the program is not executed. This problem can be
solved by increasing coverage through the discovery of new paths.

We first look at the unobfuscated execution of the factorial pro-
gram shown in Figure 2 with the variable n set to zero. Because
i <= n is not satisfied, the body of the loop is not executed; only
by setting the input variable n to a value greater than or equal
to one will the body be executed. Figure 4 shows the information

Identifying Input-Dependent Jumps from Obfuscated Execution SSPREW-8, December 3–4, 2018, San Juan, PR, USA

Figure 5: Control flow graph of factorial program (original).

extracted from a trace of the execution. The first, second, and third
columns show the identification numbers of instruction execution
instances, the addresses of the instructions, and the instructions
in assembly language, respectively. Variables i and fac occupy
memory locations pointed by ebp-0x4 and ebp-0x8, respectively,
while the input variable n is set to zero and stored in a memory
location pointed by ebp-0xc. After initialization of variables fac
and i, i and n are compared, the conditional branch is taken, and
the loop body is skipped.

We assume that the original binary executables are usual ap-
plication programs compiled using a typical compiler, in which
case any unusual behavior observed in the execution of obfuscated
programs can be taken to reflect code inserted by obfuscators.

We also assume that only the essential parts of the program are
obfuscated, and program execution starts from the unobfuscated
area before entering the obfuscated area. Applying expensive trans-
formation such as virtualization-obfuscation to entire programs
generally produces undesirable results because it significantly slows
down the execution. Identification of obfuscated areas is an inter-
esting research subject. For example, Xu et al. [23] covers a method
to detect boundaries of obfuscating virtual machines. However, the
proposed approach simply inserts markers into samples to identify
the beginning and end of the obfuscated area because it is not the
topic of this work. Obfuscation boundaries of Tigress challenges
are determined by heuristics.

In the obfuscation process, various control and data transfor-
mations are performed to increase the analysis workload through
the insertion of numerous instructions that do not change the final
results and the conversion of simple computations to more complex
variants using the laws of arithmetic and logic. Obfuscation also
alters program control flow information to mislead the analysis
process. For example, virtualization-obfuscation converts an origi-
nal program into a bytecode program and its interpreter. Figures 5
and 6 show the control flow graphs of the original factorial pro-
gram in Figure 2 and the program obfuscated by Code Virtualizer 1,
respectively. It is seen that the two graphs are different, with only
the structure of the interpreter visible in Figure 6. In this case, the
structure of the virtual machine and interpreter is determined by
the obfuscator. As a result, automated analysis of obfuscated code
is challenging even if a dynamic approach is used.

It is possible to use input-dependent jumps to find the relation-
ship between the obfuscated and original execution. A jump that
depends on an input value in the original execution must have a cor-
responding jump in the obfuscated execution because the semantics
of the original program are preserved in the obfuscation process.
Thus, an analysis of the input-dependent jumps in the obfuscated
execution can reveal decisions made in the original execution.

Table 1: Memory location statistics.

Obfuscator Total Main Constant

Original 12 0 0
Code Virtualizer 1 749 685 640
Code Virtualizer 2 1722 1626 876

Themida 2 1184 1076 932
VMProtect 2 1611 1355 1355
VMProtect 3 2123 1995 1995

To use input-dependent jumps, they must be identified from
the program execution. In Figure 4, jmp 0x8b1049 of execution
instance 941913 is not input-dependent because its target address is
predetermined. By contrast, jnle 0x8b105d of execution instance
941916 is input-dependent because its target address is determined
based on the result of comparing the variable i with the input
variable n. The jump will be considered non-input-dependent if the
value of n is predetermined.

In this work, input values are required to satisfy two conditions.
First, they are used in the code of interest but defined outside.
Secondly, they can be changed by the user. The second condition is
checked with a negative list approach, in which a set of conditions
to be a non-input value are provided; for example, a constant value
is a non-input value. In this scheme, a value is considered as an
input value if it does not satisfy any of the conditions. Although
most previous work [8, 11, 19, 26] requires manual identification
of input values, our experiment indicates that such effort is not
always necessary.

Identification of input-dependent jumps is complicated under
obfuscated execution, partly because obfuscated programs use em-
bedded constant values. Table 1 lists statistics on memory location
usage from the execution of the factorial program with the input
variable n set to two. The first and second columns show, respec-
tively, the obfuscation tools and the total sizes in bytes of the mem-
ory locations accessed during their execution. Some of the locations
are in the stack, while others are in the memory regions allocated
for the main executable image. The third column shows the sizes
in bytes of the memory locations accessed in the main executable
region. Some of these memory locations contain constant values
inserted by the obfuscator. The values of the constants’ locations
are taken directly from the executable image, and there are no write
operations to these locations. The fourth column shows the sizes
in bytes of the constants’ memory locations. It is seen that the
obfuscated programs use large numbers of constants.

To mitigate the effects of obfuscation, the results of computation
using multiple constants can be simplified to a single constant.
Obfuscated computation can also be simplified using the laws of
arithmetic and logic. Such simplification, however, requires the
use of a data structure to represent the computational process;
as discussed in the following section, such data structures can be
generated using dynamic data flow graphs.

3 DYNAMIC DATA FLOW GRAPHS
The proposed approach uses dynamic data flow graphs to represent
how output values are computed from input values. Note that our

SSPREW-8, December 3–4, 2018, San Juan, PR, USA Joonhyung Hwang and Taisook Han

Figure 6: Control flow graph of factorial program (obfuscated by Code Virtualizer 1).

notion of a flow graph is different from some literature [10], where
a flow graph is defined as a directed graph with a node that can
reach every node in the graph.

A dynamic data flow graph is a directed acyclic multigraph,
whose edges are labeled by numbers. It is defined as a 5-tuple
(N , E, def , use, pos), where N and E are disjoint sets for nodes and
edges and def : E → N , use : E → N , and pos : E → N are functions
on E. The nodes correspond to values of expressions calculated
during execution. Each access to memory or a register is considered
separately because a given location can be used for completely
unrelated purposes under obfuscated execution. If a node n ∈ N
represents a result of an operation, its operands are represented
with other nodes. For each operand, there is an edge e ∈ E directed
from the operand node to the operation node. In this case, we call
the operand node as the definition node of e denoted by def (e),
and the operation node as the use node of e denoted by use(e). If
the operation of node n takes i operands, there should be i edges
directed to n. The map pos labels these edges by assigning position
numbers from 1 to i according to the order of the operands. There
should be no cycle in a dynamic data flow graph, because it is not
possible to use a value before definition. A dynamic data flow graph
can be generated for a single output or multiple output values;
additionally, a dynamic data flow graph for a single output value
can be extracted as a subgraph from a graph for multiple output
values.

The dynamic data flow graph nodes are designed to provide both
symbolic and concrete information on the computational process.
A node is defined as a 3-tuple (id, type, info), where id is a node
identification number, type is a node type corresponding to the
type of expression it represents, and info is information for type-
dependent analysis. The concrete value of each expression and its
size in bits are stored for all nodes. They are used when a node for
a symbolic variable or a result of an operation is converted to a
node for a constant. They are also used to check the consistency of
the graph.

The types of nodes and their corresponding information are
listed in Table 2. The nodes of a dynamic data flow graph can be
categorized into the following types: Access, Integer, Operation,
Symbol, and Variable. An Access node represents the read or write
access of an execution instance of an instruction to a target. In
this case, the address of the target and the identification number of
the execution instance are stored in the node along with the mode
of access, which is r for a read or w for a write. An Integer node
represents a constant. An Operation node represents an operation

Table 2: Types of nodes.

Type Information

Access address, execution, mode, size, value
Integer size, value
Operation size, value
Symbol name, size, value
Variable address, size, value

with operands. The operands of an operation are independently
represented by separate nodes and connected by edges to the Op-
eration node. A Symbol node represents a value that is determined
by the environment. For example, the start address of a section in
memory, which is determined by the loader when the image of the
executable is loaded, will be represented by a specific Symbol node.
Each Symbol node is given a name, which is stored in the node. A
Variable node represents a value given from outside. For example, a
command line argument will be represented by a specific Variable
node. The value of a Variable node is read from an address in the
memory or a register that is stored in the Variable node.

Access type has two special subtypes: Input and Output. Input
subtype is used for values from system-dependent operations. For
example, an output value of RDTSC instruction, which reads the
time-stamp counter of the processor, is represented by an Input
node. Output subtype is used to mark output values. For example,
a target address of a jump is represented with an Output node in
our experiments.

Operation type has various subtypes that are categorized ac-
cording to their semantics as in Table 3. Operation node subtypes
are based on the machine instruction types but are modified to
facilitate analysis. Nodes for associative operations can have arbi-
trary numbers of operands, although actual machine instructions
have limited numbers of operands. If an instruction has multiple
output values, each is separately represented. Furthermore, the
computation of an output value is represented separately from the
computation of the status register. A node for a conditional jump
has three operands. The first is a value from the status register. If
the condition is satisfied for the first operand, the target address is
set to the value from the second operand; otherwise, the target ad-
dress is set to the value from the third operand, which contains the
address of the next instruction of the jump instruction. Note that
machine instructions for conditional jumps have only one target; if

Identifying Input-Dependent Jumps from Obfuscated Execution SSPREW-8, December 3–4, 2018, San Juan, PR, USA

1: s_text = 0x008b1000

3: Add

1

2: 0x00000049

2

4: w_941913_eip

1

Figure 7: Dynamic data flow graph for jmp 0x8b1049.

the condition is not satisfied, the next instruction is executed. Indi-
rect memory access is expressed by IndirectRead and IndrectWrite
nodes, each of which will have two operands—one for the memory
address and the other for the value at the address. Merge and Split
nodes represent combinations of operations of different sizes. For
example, if a program first writes to the EAX register and then to
the AL register, which is the lower half of the EAX register, the final
value of the EAX register will be a combination of the results of the
two operations. The value of a Merge node is the concatenation of
the values of its operands, while that of a Split node is computed by
selecting bits from the value of its operand. The positions at which
a selection is started and stopped are stored in a Split node.

The proposed method uses an address scheme that gives an
address to each register, with a 64-bit flat memory used for both
registers and memory. Register addresses are taken from a set of ad-
dresses not used during the execution. Currently, the non-canonical
addresses of x64 [1], which are not to be used by any 32-bit or 64-bit
application, are used for this purpose. Registers of different threads
use different addresses. If possible, a memory address is expressed
as the sum of a base address and an offset to allow for consistent
expressions over multiple executions regardless of the memory
allocation including relocation.

Generated graphs can be visualized or expressed in prefix nota-
tion. Figure 7 shows an example of visualization of the dynamic
data flow graph for jmp 0x8b1049 in Figure 4. The target address is
converted to a sum of a section address and an offset. The numbers
before the colons in the nodes are the node identification numbers.
Node 1 is a Symbol node that contains the address of the .text
section, which is 0x008b1000. Node 2 is an Integer node whose
value is 0x00000049. Node 3 is an Operation node for addition
whose operands are Nodes 2 and 3. Node 4 is an Access node for
the output, which is a write access at execution instance 941913 to
the EIP register. In prefix notation, this is the output w_941913_eip
set to (Add s_text 0x00000049).

4 TRACE AND GRAPH GENERATION
The trace generation tool is written in C++ using Pin [13], a dy-
namic binary instrumentation framework from Intel. Traces are
written in extensible markup language (XML). Each trace has a
trace entity containing a sequence of img, ins, execution, and
access entities. Each img entity has information on the image of
an executable and contains a raw entity and several rgn entities.
Executable images in the memory can differ from executable images
on the disk. Some addresses within the images are changed during
relocation. In Windows, the security cookies in the images are set
to new values. Images are recorded both prior to and following
loading for completeness. The main executable prior to loading is
stored in a raw entity. A region of an executable is a collection of
sections that occupies a contiguous area within the memory. There
can be multiple regions for an executable. Each region of the post-
loading main executable is stored in a rgn entity. An ins entity has
information about an instruction, which can be executed multiple
times. An execution entity has information about an execution
instance of an instruction. Each execution instance is accompanied
by access to registers and memory locations. An access entity has
information about such access.

It is worth noting that research has been conducted on anti-
instrumentation techniques and their countermeasures, e.g., Polino
et al. [17]. However, because it is outside the scope of this work,
we will not discuss this issue further.

A generated trace can be stored in a database. A table is created
for each entity in the XML. Columns of each table are taken from
the attributes of the corresponding entity.

The proposedmethod uses a tool that constructs andmanipulates
dynamic data flow graphs in Python. Each graph is implemented
as a dictionary that maps a node identification number to a tuple
of the node and a tuple of identification numbers of the nodes of
its direct predecessors. For faster access, a hash value is assigned
to each graph node and each value in the dictionary for the graph.
The graphs can be stored in a JavaScript object notation (JSON) file.

A dynamic data flow graph is generated backwards from each
write access to the program counter. The program counter is written
by call and return instructions and unconditional and conditional
jumps. For each conditional jump, the target address and value of
the status register are both investigated; otherwise, only the target
address is investigated.

Graph generation begins with a graph with Access nodes as
output. Each jump is represented by a node for write access to the
program counter. The graph grows by adding predecessors to the
Access nodes. If an Access node corresponds to write access, nodes
for read access that affect the computation based on the type of op-
eration are added. In this case, write and read access are performed
by the same execution instance. If an Access node corresponds to
read access, nodes for the latest write access are added to the target
addresses from the previous execution instances in the obfuscated
part of the execution. If there are multiple such nodes, they are
merged using an Operation node for merge operation. If there are
no such nodes, a Variable node is added and it is concluded that the
value of the read access is from the outside of the obfuscated part
of the execution. Nodes are added until there is no Access node
without a predecessor. The process terminates because the length

SSPREW-8, December 3–4, 2018, San Juan, PR, USA Joonhyung Hwang and Taisook Han

Table 3: Subtypes of Operation type.

Category Subtypes

Arithmetic and Logic Add, And, Bswap, . . . , Cmpxchg, . . . ,Mul, Neg, Not, Or, . . . , Rol, Ror, . . . , Shl, Shr, Sub, Xor
Flags ADD_FLAGS, . . . , CMP_FLAGS, CMPXCHG_FLAGS, . . . , TEST_FLAGS, . . .
Conditional Jumps JB, JBE, JL, JLE, JNB, JNBE, JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP, JS, JZ
Indirection IndirectRead, IndirectWrite
Merge and Split Merge, Split

of the trace is finite, with a time complexity roughly linear to the
length of the trace.

5 GRAPH SIMPLIFICATION AND
INPUT-DEPENDENT JUMP
IDENTIFICATION

To remove the effects of obfuscation, the proposed method simpli-
fies graphs by applying simplification rules until no change can be
made. Each node is tested with its predecessors to check whether
it can satisfy the conditions of any simplification rules; if a rule
can be applied, the corresponding action is performed. The simpli-
fication rules need to be adjusted depending on the situation and
the desired granularity. It must be ensured that the simplification
process eventually terminates.

Our simplification process begins with identification of non-
input values. We use two conditions based on general properties of
well-behaved programs. First, if a value of a Variable node is taken
from a value embedded in the code area, it is considered as constant.
Then the node is replaced by an Integer node. If the address of a
Variable node belongs to the range of the main executable, all access
to that address is investigated. Secondly, the value of the trap flag
of the status register is simplified to a constant because the trap
flag is not one of the seven flags used by applications.

Computations using constants are simplified. If all operands of
an Operation node are constants, the result of the operation is
considered to be constant and the node is replaced by an Integer
node.

Movement of data is simplified. If a value is moved multiple
times, the movements are simplified to a single movement. Indirect
memory access is simplified to a direct memory access if its target
address is fixed. If a Split node has aMerge node as an operand and
only one operand of theMerge node corresponds to the position
and size of the Split node, the Split node is replaced by the node of
that operand.

Operations are simplified depending on their semantics. Figure 8
shows the rules for simplification using prefix notation. If an op-
eration is commutative and associative, its operands are collected
together. If such an operation has multiple constant operands, they
are simplified to a single operand. Like terms in the operands of an
addition are combined. For example, (Add x x x) becomes (Mul x 3);
because addition is easier to simplify than subtraction, subtracting
x from y is represented as adding the negation of x to y.

Replacing nodes with simpler nodes makes some nodes unusable;
nodes that do not reach an output node are removed.

A jump is identified as input-dependent if its simplified graph
has an Input node that represents a result of a system-dependent

∗ Rules using associativity:
• (Add x . . . (Add y . . .)) → (Add x . . . y . . .)
• (And x . . . (And y . . .)) → (And x . . . y . . .)
• (Mul x . . . (Mul y . . .)) → (Mul x . . . y . . .)
• (Or x . . . (Or y . . .)) → (Or x . . . y . . .)
• (Xor x . . . (Xor y . . .)) → (Xor x . . . y . . .)

∗ Rules using identity:
• (Add x (Neg x)) → 0
• (Add x 0) → x
• (And x (Not x)) → 0
• (And x -1) → x
• (And x 0) → 0
• (And x x) → x
• (Mul x 0) → 0
• (Mul x 1) → x
• (Neg (Neg x)) → x

• (Not (Not x)) → x
• (Or x (Not x)) → -1
• (Or x -1) → -1
• (Or x 0) → x
• (Or x x) → x
• (Xor x (Not x)) → -1
• (Xor x -1) → (Not x)
• (Xor x 0) → x
• (Xor x x) → 0

Figure 8: Sample rules for simplification.

operation or a Variable node that represents a value from outside
of the obfuscated area. If an input-dependent jump is found, all
access to flag operation results in the computation of the jump is
considered as used. Values of used access are considered to be con-
stants in the analysis of later jumps. Jumps computed by applying
non-input-dependent computation to a previous input-dependent
jump are not identified as input-dependent.

6 EXPERIMENTAL RESULTS
We generated and simplified dynamic data flow graphs to iden-
tify input-dependent jumps for factorial and bubble sort programs
treated with the commercial obfuscators and Tigress challenges.
Traces of new samples and Tigress challenges are generated, re-
spectively, on x86 Windows and x64 Linux machines. The traces
were analyzed on a Linux system with dual Intel Xeon E5-2640 v3
processors and 128GB of memory.

Tables 4–6 show the results. In the tables, the first column shows
the names of the obfuscators or samples used. The second column
shows the input values given to the program through the command
line. The third columns show the number of instances of executed
instructions in the obfuscated part of the execution, while the fourth
columns display the number of total jumps, i.e., the number of write
accesses to the program counter. The fifth and sixth columns show,
respectively, the number of input-dependent jumps before and
after simplification. The seventh columns show the time spent to

Identifying Input-Dependent Jumps from Obfuscated Execution SSPREW-8, December 3–4, 2018, San Juan, PR, USA

generate the dynamic data flow graph for all target addresses from
the trace stored in the database in seconds and, finally, the eighth
columns show the time spent to simplify the dynamic data flow
graph and identify the input-dependent jumps in seconds.

For the factorial programs, the number of input-dependent jumps
exceeds the input n by one because the counter i is compared to n
before each iteration of the loop. For the bubble sort programs with
a single input value, only one jump is input-dependent because
only one comparison is performed to check the counter i. For the
bubble sort programs with three input values, there are six input-
dependent jumps because three comparisons each are carried out to
check the counter and compare the values of the array, respectively.
There is no input-dependent jump for the inner loop for (j = i;
j > 0; j--) because both i and j are initialized and computed in
the obfuscated part of the execution.

It is seen that the number of input-dependent jumps taken by
the obfuscated programs are significantly decreased after simpli-
fication. For three of the obfuscators, all input-dependent jumps
were identified with precise information about the input; however,
the simplification did not work as well for the remaining obfusca-
tors, but it is expected that the use of better simplification rules
would improve these results. The programs obfuscated by Themida
2 performed initialization before executing code in the obfuscated
area; some values from this initialization were incorrectly identi-
fied as input values, and excluding them from the input would also
improve the results.

Although the process is not straightforward, simplified dynamic
data flow graphs of input-dependent jumps can be used to identify
jump conditions with reasonable effort. Input values for new paths
can be generated using the identified jump conditions. Without
simplification, identification of jump conditions is nearly impossi-
ble.

Figure 9 shows a simplified dynamic data flow graph for jnle
0x8b105d in Figure 4. The jump corresponds to i <= n in Figure 2,
where the variable i is set to one and the variable n has the input
value. The jump is performed by the jump if not less or equal (JNLE)
instruction following the compare (CMP) instruction. The branch is
taken if the input is less than one; because in this case the value of
the input is zero, the branch is taken and the loop body is skipped.
A new path can be discovered by using an input value greater than
or equal to one.

Figure 10 shows a dynamic data flow graph of the input-dependent
jump, corresponding to the jump of the original program in Figure 9,
from the execution of the factorial program obfuscated by Code
Virtualizer 1 with input zero. In the original program, the JNLE
instruction performs a jump to the target if zero flag (ZF, 0x40)
is 0 and sign flag (SF, 0x80) and overflow flag (OF, 0x800) are the
same. In the obfuscated program, the target address is still com-
puted using the flags from the CMP instruction but the semantics
of the JNLE instruction are emulated using other operations. Node
4 contains the flags computed by comparing the input variable n
with the constant one. Flags of interest are extracted by the AND
operations. SF in Node 6 and OF in Node 10 are compared by the
XOR operation at Node 13. The least significant bits of Nodes 14, 15,
and 24 will be 1 if SF and OF are the same. ZF in Node 17 is manip-
ulated so that the second least significant bit of Node 24 will be 1 if
ZF is 0. The jump to the target address is taken if the value of Node

24 is 3, which occurs if ZF = 0 and SF = OF. Although following
this graph is by no means trivial, the simplification process makes
it significantly easier to understand the execution. The simplified
graph has 34 nodes and 40 edges, as compared to 15,863 nodes and
19,717 prior to simplification.

Figure 11 shows the corresponding graph from VMProtect 3.
The graph has 59 nodes and 70 edges, as compared to the 15,064
nodes and 18,223 edges on the pre-simplified graph. In this case,
the computation of the flags by the CMP instruction is split into
two parts. SF and ZF are computed using the ADD operation at
Node 3, while OF is computed using the ADD_FLAGS operation at
Node 10; the three flags are then merged by the ADD operation at
Node 12 and evaluated to see whether the condition of the JNLE
instruction is met. The value of Node 34 is 0x40 if ZF = 0 and SF =
OF, and the target address is computed using the value of Node 34
and other non-input-dependent values.

7 RELATEDWORK
Collberg et al. [6] is a classic survey of obfuscation and deobfus-
cation techniques in which obfuscation is defined as transforma-
tion of a source program to a target program provided that the
source and target programs have the same observable behavior.
Virtualization-obfuscation is mentioned as one of the most effective
obfuscation transformations, while identification and evaluation of
opaque variables and predicates is identified as the most difficult
part of deobfuscation.

Schrittwieser et al. [20] is a relatively recent survey that provides
a classification of analysis scenarios based on analysis methods and
goals. In their work, analysis methods are classified into four cat-
egories: pattern matching, static analysis, dynamic analysis, and
human analysis. Analysis goals are similarly classified as: locat-
ing data, locating code, extracting code, and understanding code.
According to their categorization, our work can be classified as
locating code through dynamic analysis.

Obfuscators are used to make programs difficult to understand.
It is worth noting that currently used obfuscators generally do not
have a theoretical proof of effectiveness. In Barak et al. [3], obfusca-
tion is required to have the black box property: any analysis result
from an obfuscated program can be obtained from oracle access
to its original program. Although obfuscators with the black box
property have interesting cryptographic applications, it is shown
that they do not exist. Although there has been research on weaker
notions of obfuscation with promising results, e.g., Garg et al. [9],
they have yet to be used in practice. Accordingly, to date the ef-
fectiveness of obfuscators has been evaluated through empirical
means.

In Coogan et al. [8], the analysis of virtualization-obfuscation is
classified into two categories: outside-in approaches and inside-out
approaches. Under an outside-in approach, the structure of the vir-
tual machine is first analyzed and the result is used to understand
an obfuscated program. Under an inside-out approach, an obfus-
cated program is directly analyzed without regard to the structure
of the virtual machine. The method proposed in this paper takes
an inside-out approach, which, because of its generality, makes it
effective against various obfuscation techniques.

SSPREW-8, December 3–4, 2018, San Juan, PR, USA Joonhyung Hwang and Taisook Han

Table 4: Input-dependent jumps from factorial program.

Obfuscator Input Length Total Without With Generation Simplification
Jumps Simplification Simplification Time (s) Time (s)

Original

0 6 2 1 1 0.03 0.01
1 16 4 2 2 0.07 0.01
2 26 6 3 3 0.10 0.02
10 106 22 11 11 0.31 0.05

Code Virtualizer 1

0 8178 1762 165 1 28 7
1 18674 4061 366 2 73 27
2 29170 6360 567 3 110 57
10 113138 24752 2175 11 437 891

Code Virtualizer 2

0 82909 1647 1425 1 114 32
1 127961 2531 2272 2 164 59
2 173029 3416 3120 3 214 91
10 533581 10492 9904 11 640 642

Themida 2

0 65311 1276 1265 117 71 40
1 108583 2137 2122 194 135 87
2 151874 2999 2980 271 183 157
10 498202 9895 9844 887 610 1471

VMProtect 2

0 37773 5548 590 1 67 510
1 72090 10613 1123 2 133 1149
2 106345 15678 1656 3 206 1792
10 380721 56198 5920 11 971 8723

VMProtect 3

0 13311 1275 369 1 19 4
1 28443 2826 789 2 43 11
2 43575 4377 1209 3 69 17
10 164631 16785 4569 11 262 121

Table 5: Input-dependent jumps from bubble sort program.

Obfuscator Input Length Total Without With Generation Simplification
Jumps Simplification Simplification Time (s) Time (s)

Original
1 2 3 68 19 11 6 0.26 0.06
2 5 2 1 1 0.02 0.01

3 2 1 110 19 11 6 0.37 0.07

Code Virtualizer 1
1 2 3 102598 19255 1291 6 219 276
2 13233 2464 166 1 27 8

3 2 1 177538 33502 2200 6 397 747

Code Virtualizer 2
1 2 3 324025 6896 6453 6 605 540
2 75656 1552 1343 1 163 72

3 2 1 571369 12062 11355 6 1060 1400

Themida 2
1 2 3 310336 6370 6197 533 358 353
2 60729 1194 1161 110 73 27

3 2 1 557585 11350 11051 968 658 1072

VMProtect 2
1 2 3 263724 30344 10953 22 585 463
2 34505 3713 1330 3 52 14

3 2 1 326556 35213 12726 40 766 761

VMProtect 3
1 2 3 115449 14334 3456 6 194 79
2 11649 1486 333 1 18 4

3 2 1 132483 16635 3987 6 226 88

Identifying Input-Dependent Jumps from Obfuscated Execution SSPREW-8, December 3–4, 2018, San Juan, PR, USA

Table 6: Input-dependent jumps from Tigress challenges (Linux-x86_64).

Sample Input Length Total Without With Generation Simplification
Jumps Simplification Simplification Time (s) Time (s)

0000/challenge-0 0 39742 2872 1999 0 1575 28
0000/challenge-1 0 86212 11426 8142 1 10505 94
0000/challenge-2 0 30801 10409 9816 3 1766 24
0000/challenge-3 0 43534 3421 2488 0 1908 32
0000/challenge-4 0 17665 2725 1366 1 322 9

0001/challenge-0 0 12253 411 228 188 51 8
0001/challenge-1 0 13975 455 247 208 72 13
0001/challenge-2 0 31431 1119 610 609 248 71
0001/challenge-3 0 24415 804 435 338 146 22
0001/challenge-4 0 17080 567 304 303 81 17

0003/challenge-0 0 437698 24623 13331 2 11783 809
0003/challenge-1 0 113812 6843 3721 2730 1204 247
0003/challenge-2 0 89682 5181 2921 991 672 82
0003/challenge-3 0 50412 3579 1839 1 391 20
0003/challenge-4 0 216907 17952 9486 7891 4025 1452

1: 0x00000001

3: CMP_FLAGS

1

2: v_0x0020f874 = 0x00000000

2

9: JNLE

1

4: s_text = 0x008b1000

6: Add

1

8: Add

1

5: 0x0000005d

2

2

7: 0x00000051

2

3

10: w_941916_eip

1

Figure 9: Simplified dynamic data flow graph for i <= n (original).

Sharif et al. [21] takes an outside-in approach to dynamic analy-
sis on traces in which variables are identified using forward and
backward dynamic data flow analysis. After identifying the virtual
program counter from variables, each part of the bytecode inter-
preter is identified using dynamic taint analysis. After extracting
the syntax and semantics of the bytecode instructions, a control
flow graph is generated for the bytecode.

Rolles [18] takes another outside-in approach using human anal-
ysis in which the structure of the virtual machine is manually
reverse-engineered and the bytecode is converted into intermediate
representation. After applying optimization to the intermediate
representation, x86 code is generated.

Kinder [11] takes yet another outside-in approach using static
analysis. Precise static analysis of a virtualization-obfuscated pro-
gram is difficult because unrelated locations in the original program

can be mapped to the same location in the obfuscated program. This
problem, called domain flattening, is solved by using the virtual
program counter.

Coogan et al. [8] takes an inside-out approach using dynamic
analysis in which a relevant subtrace is extracted from a trace of an
obfuscated program as an approximation of the trace of the original
program. Here, a relevant subtrace is defined as one comprising
relevant instructions, i.e., instructions that affect the values of the
arguments of system calls of interest or the conditional control flow
or instructions related to function calls and returns. Conditional
control flow is analyzed using the equational reasoning system [7],
and an expression for the target address is generated and simplified
for each jump. Conditional control flow is considered relevant if
the target address depends on the value of a flag operation. One

SSPREW-8, December 3–4, 2018, San Juan, PR, USA Joonhyung Hwang and Taisook Han

1: 0x00000003

27: CMP_FLAGS

1

33: JZ

1

2: 0x00000001

4: CMP_FLAGS

1

15: And

2

21: And

2

6: And

1

10: And

1

17: And

1

24: Or

1

23: Shl

1

3: v_0x0012ff34 = 0x00000000

2

8: Shr

1

12: Shr

1

19: Shr

1

5: 0x00000080

2

13: Xor

1

7: 0x07

2

14: Not

1

9: 0x00000800

2

2

11: 0x0b

2

1

25: Shl

1

16: 0x00000040

2

20: Not

1

18: 0x06

2

1

2

22: 0x01

2

2

26: Shr

2

1

2

34: w_948461_eip

1

28: s_v_lizer = 0x0041b000

30: Add

1

32: Add

1

23

29: 0x00002c37

2

31: 0x00002c1d

2

Figure 10: Simplified dynamic data flow graph for i <= n (Code Virtualizer 1).

limitation of this work is that, unlike our work, the use of constant
values is not specially treated.

Yadegari et al. [24] develop enhanced bit-level taint analysis to
analyze obfuscated machine code. They improve the precision of
taint analysis through the use taint source information; for example,
the result of the exclusive disjunction of two values with the same
taint information is not considered tainted. An application of such
taint analysis is its use in control flow graph construction [26], in
which a control flow graph of an original program is constructed
from traces of an obfuscated program using input-tainted condi-
tional control transfers. Another application is its use in symbolic
execution [25], in which a predicate is computed for each jump
as a logical conjunction of conditions that are obtained from the
taint information of the jump. The path constraint is updated by
performing logical conjunction with these jump predicates and the
input for a new path is generated by solving the path constraint.

One of the advantages of using dynamic data flow graphs instead
of enhanced bit-level taint for analysis is that the former allows
for more simplification. For example, the code in Figure 12 sets
the value of the EAX register to zero. Assuming that input_1 and
input_2 have values from different input sources, then dynamic
data flow graphs can be used to simplify the final value of the
EAX register to zero, which is not input-dependent. If enhanced
bit-level taint analysis is used instead, different taint markings
are given to the input_1 and input_2 operands, which causes
another taint marking to be given to the result of the first XOR
operation. Similarly, new taint markings are given to the results of
the second and third XOR operations. As a result, the final value
of the EAX register is considered as a tainted value. Improved
precision therefore requires additional simplification.

Symbolic execution [2] has been actively applied to the analysis
of opaque predicates. In Ming et al. [14], forward dynamic symbolic

Identifying Input-Dependent Jumps from Obfuscated Execution SSPREW-8, December 3–4, 2018, San Juan, PR, USA

1: v_0x0021f854 = 0x00000000

3: Add

1

10: ADD_FLAGS

2

2: 0xfffffffe

2 1

4: Not

1

5: OR_FLAGS

1 2

6: Not

1

8: Or

1

7: 0x00000815

2

11: And

2

9: Not

1

12: Add

1

1

2

13: Not

1

20: AND_FLAGS

2

29: AND_FLAGS

2

15: Or

1

14: 0xfffff7ff

2

16: Not

1

17: OR_FLAGS

1 2

18: Not

1

24: And

1

22: And

1

19: 0x00000080

1

21: Not

1 2

2

23: Not

1

26: And

1

25: Not

1

2

27: Not

1

30: And

1

28: 0x00000040

1

2

31: Not

1

33: Or

1

32: 0xffffffbf

2

34: Not

1

36: Shr

1

35: 0x06

2

38: Add

1

37: 0xffffffff

2

39: Not

1

44: Or

1

41: Or

1

40: 0xffbaf947

2

42: Not

1

47: Add

1

50: Add

1

43: 0xffbaf9d9

2

45: Not

1

22

46: 0x006cfffc

3

49: IndirectRead

1

48: 0xb2e4bac6

2

51: Xor

1

2

52: Bswap

1

53: Neg

1

55: Add

1

54: 0xdf76a1b1

2

56: Bswap

1

58: Add

1

57: 0x00b503d2

2

59: w_952432_eip

1

Figure 11: Simplified dynamic data flow graph for i <= n (VMProtect 3).

SSPREW-8, December 3–4, 2018, San Juan, PR, USA Joonhyung Hwang and Taisook Han

mov eax, input_1
xor eax, input_2
xor eax, input_1
xor eax, input_2

Figure 12: Setting the EAX register to zero.

execution is used to detect opaque predicates, while Bardin et al. [4]
applies backward-bounded dynamic symbolic execution. Whereas
the focus of such work is on opaque predicates using algebraic
equalities and inequalities, our work is focused on how jumps are
affected by the input. In Xu et al. [23], multiple granularity symbolic
execution is used to simplify virtualized snippets.

In Salwan et al. [19], dynamic taint analysis and dynamic sym-
bolic execution are used to generate intermediate representation
for LLVM [12] from virtualization-obfuscated machine code. In this
approach binary code is generated from the intermediate represen-
tation using LLVM. However, programs with user-dependent loop
or memory access are not considered.

8 CONCLUSION
We developed a method for identifying input-dependent jumps
from obfuscated execution using dynamic data flow graphs. Jumps
from the original programs can be distinguished from the jumps
from the obfuscation. Although generation and simplification of
the dynamic flow graphs require considerable computational ef-
fort, this is justified by the reduction in human effort needed for
manual analysis. The performance of the proposed method can be
further improved by using better algorithms with parallel execution.
Our method can be applied to improve other techniques such as
symbolic execution. In future work, we intend to perform further
control flow analysis using dynamic data flow graphs generated
using the proposed method.

ACKNOWLEDGMENTS
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (2015R1D1A1A01057195). The authors
would like to thank the anonymous reviewers for their instructive
comments.

REFERENCES
[1] Advanced Micro Devices, Inc. 2017. AMD64 Architecture Programmer’s Manual,

Volume 1: Application Programming (Revision 3.22).
[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and

Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (May 2018), 39 pages. https://doi.org/10.1145/3182657

[3] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. 2001. On the (Im)possibility of Obfuscating Programs. In
Proceedings of the 21st Annual International Cryptology Conference (CRYPTO ’01).
1–18. https://doi.org/10.1007/3-540-44647-8_1

[4] Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-Bounded
DSE: Targeting Infeasibility Questions on Obfuscated Codes. In Proceedings of
the 38th IEEE Symposium on Security and Privacy. 633–651. https://doi.org/10.
1109/SP.2017.36

[5] Christian Collberg. 2018. Reverse Engineering Challenges! Retrieved November
12, 2018 from http://tigress.cs.arizona.edu/challenges.html

[6] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A Taxonomy of
Obfuscating Transformations. Technical Report 148. Department of Computer
Science, The University of Auckland, New Zealand.

[7] Kevin Coogan and Saumya Debray. 2011. Equational Reasoning on x86 Assembly
Code. In Proceedings of the 11th IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM ’11). 75–84. https://doi.org/10.1109/
SCAM.2011.15

[8] Kevin Coogan, Gen Lu, and Saumya Debray. 2011. Deobfuscation of
Virtualization-Obfuscated Software: A Semantics-Based Approach. In Proceedings
of the 18th ACM Conference on Computer and Communications Security (CCS ’11).
275–284. https://doi.org/10.1145/2046707.2046739

[9] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. 2013. Candidate Indistinguishability Obfuscation and Functional
Encryption for all circuits. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’13). 40–49. https://doi.org/10.1109/
FOCS.2013.13

[10] Matthew S. Hecht and Jeffrey D. Ullman. 1972. Flow Graph Reducibility. In
Proceedings of the 4th Annual ACM Symposium on Theory of Computing (STOC
’72). 238–250. https://doi.org/10.1145/800152.804919

[11] Johannes Kinder. 2012. Towards Static Analysis of Virtualization-Obfuscated
Binaries. In Proceedings of the 19th Working Conference on Reverse Engineering
(WCRE ’12). 61–70. https://doi.org/10.1109/WCRE.2012.16

[12] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO ’04). 75–86.
https://doi.org/10.1109/CGO.2004.1281665

[13] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). 190–200. https://doi.org/10.1145/1065010.
1065034

[14] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. 2015. LOOP: Logic-
Oriented Opaque Predicate Detection in Obfuscated Binary Code. In Proceedings
of the 22nd ACM Conference on Computer and Communications Security (CCS ’15).
757–768. https://doi.org/10.1145/2810103.2813617

[15] Oreans Technologies. 2018. Code Virtualizer Overview. Retrieved November 12,
2018 from https://www.oreans.com/codevirtualizer.php

[16] Oreans Technologies. 2018. Themida Overview. Retrieved November 12, 2018
from https://www.oreans.com/themida.php

[17] Mario Polino, Andrea Continella, Sebastiano Mariani, Stefano D’Alessio, Lorenzo
Fontana, Fabio Gritti, and Stefano Zanero. 2017. Measuring and Defeating Anti-
Instrumentation-Equipped Malware. In Proceedings of the 14th Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA ’17).
73–96. https://doi.org/10.1007/978-3-319-60876-1_4

[18] Rolf Rolles. 2009. Unpacking Virtualization Obfuscators. In Proceedings of the 3rd
USENIX Workshop on Offensive Technologies (WOOT ’09).

[19] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. 2018. Symbolic
Deobfuscation: From Virtualized Code Back to the Original. In Proceedings of
the 15th Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA ’18). 372–392. https://doi.org/10.1007/978-3-319-93411-2_17

[20] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. 2016. Protecting Software Through Obfuscation: Can
It Keep Pace with Progress in Code Analysis? ACM Comput. Surv. 49, 1, Article 4
(April 2016), 37 pages. https://doi.org/10.1145/2886012

[21] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. 2009. Automatic
Reverse Engineering of Malware Emulators. In Proceedings of the 30th IEEE
Symposium on Security and Privacy. 94–109. https://doi.org/10.1109/SP.2009.27

[22] VMProtect Software. 2018. VMProtect Software Protection. Retrieved November
12, 2018 from https://vmpsoft.com/

[23] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A Verifiable
Approach to Partially-Virtualized Binary Code Simplification. In Proceedings of
the 25th ACM Conference on Computer and Communications Security (CCS ’18).
442–458. https://doi.org/10.1145/3243734.3243827

[24] Babak Yadegari and Saumya Debray. 2014. Bit-Level Taint Analysis. In Proceedings
of the 14th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM ’14). 255–264. https://doi.org/10.1109/SCAM.2014.43

[25] Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated
Code. In Proceedings of the 22nd ACM Conference on Computer and Communica-
tions Security (CCS ’15). 732–744. https://doi.org/10.1145/2810103.2813663

[26] Babak Yadegari, Brian Johannesmeyer, Benjamin Whitely, and Saumya Debray.
2015. A Generic Approach to Automatic Deobfuscation of Executable Code.
In Proceedings of the 36th IEEE Symposium on Security and Privacy. 674–691.
https://doi.org/10.1109/SP.2015.47

https://doi.org/10.1145/3182657
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1109/SP.2017.36
https://doi.org/10.1109/SP.2017.36
http://tigress.cs.arizona.edu/challenges.html
https://doi.org/10.1109/SCAM.2011.15
https://doi.org/10.1109/SCAM.2011.15
https://doi.org/10.1145/2046707.2046739
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1145/800152.804919
https://doi.org/10.1109/WCRE.2012.16
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/2810103.2813617
https://www.oreans.com/codevirtualizer.php
https://www.oreans.com/themida.php
https://doi.org/10.1007/978-3-319-60876-1_4
https://doi.org/10.1007/978-3-319-93411-2_17
https://doi.org/10.1145/2886012
https://doi.org/10.1109/SP.2009.27
https://vmpsoft.com/
https://doi.org/10.1145/3243734.3243827
https://doi.org/10.1109/SCAM.2014.43
https://doi.org/10.1145/2810103.2813663
https://doi.org/10.1109/SP.2015.47

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Dynamic Data Flow Graphs
	4 Trace and Graph Generation
	5 Graph Simplification and Input-Dependent Jump Identification
	6 Experimental Results
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

